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Abstract 

Distinguishing between natural and anthropic oil slicks is 
considered a challenging task, especially in Gulf of 
Mexico where these events can be simultaneously 
observed and recognized as seeps or spills. In this 
context, the powerful data analysis provided by Machine 
Learning (ML) methods was employed to develop, test, 
and implement a classification model (CM) to distinguish 
the oil slick source (OSS). From a database containing 
4,916 oil samples, detected using Synthetic Aperture 
Radar (SAR), there were 408 spectral and 10 geometric 
features. The exploratory data analysis successfully 
reduced the dataset without compromising the model 
accuracy, selecting 12 features for the CM designing. An 
innovative approach evaluated how external factors like 
seasonality limit or improve the OSS predictions. To 
accomplish this, specific classification models (SCM) 
were derived from the global, tuning the best algorithms 
and parameters according to different scenarios. The 
median accuracies results revealed winter and spring as 
the best seasons. Among the six tested ML algorithms, 
Random Forest (RF) was the most robust, performing 
better in more than half of the investigated scenarios. The 
global CM achieved 73.15% of maximum accuracy using 
RF. The accuracy increment provided by the well-fitted 
models may minimize the confusion between seeps and 
spills. This represents a concrete contribution to reduce 
economic and geologic risks derived from exploration 
activities in offshore areas. Additionally, from the 
operational standpoint, specific models support 
specialists to select the best seasons for new 
acquisitions, as well as to optimize performances 
according to available data. 

 

Introduction 

The imminent risk of environmental, social, and economic 
impacts caused by oil pollution highlights the importance 
of identifying the source of the slicks. The oil spill 
detection may assist environmental regulatory agencies in 
the application of legal sanctions, as well as support the 
clean-up operations during emergency response actions 
[1],[2]. On the other hand, oil seep identification protects 

the oil industry against penalties for events in which there 
was no human interference. Additionally, the geologic 
risks related to the discovery of new exploration frontiers 
may be minimized [3]. 

Synthetic Aperture Radars (SAR) are the main instrument 
used for detecting and monitoring mineral oil slicks 
operationally. These remote sensors have potential to 
provide data in near real-time, during the day and night, 
under all weather conditions, combining different bands, 
resolutions, incidence angles and polarizations [1],[2],[4].  

Regardless of whether the source is natural or anthropic, 
mineral oil slicks induce the same physical mechanism of 
damping the sea surface roughness. Consequently, these 
events are similarly detected as dark spots regions with 
low backscatter response in SAR images [5],[6], making 
the pollution source identification defiant. Several factors 
significantly affect the oil slick detection [9], including: (i) 
type and volume of oil; (ii) SAR antenna configuration, 
image acquisition parameters, data format and pre-
processing techniques; (iii) meteo-oceanographic 
conditions and presence of false alarms (FA), known as 
lookalikes. 

Despite the backscattering similarities, different 
weathering processes may change the physicochemical 
properties of mineral oils and, consequently, their 
detectability in SAR data [2]. Moreover, the patterns 
observed in terms of shape, dimensions, persistence, and 
spatial recurrence are also distinct, adding important 
information when designing a classification model (CM) 
[4]. 

Considering as reference a large database collected and 
validated over 13 years [7-9], the proposed research aims 
to develop a CM to differentiate natural from anthropic oil 
slicks using these time series of calibrated RADARSAT-2 
data. To accomplish this, several spectral, geometric, and 
ancillary features were used as predictive (independent) 
attributes to learn and recognize patterns related to the 
categorical (dependent) one, named as Oil Slick Source 
(OSS).  

Machine Learning (ML) is widely indicated to deal with 
scientific problems like this, without a defined solution, but 
with a large and validated database to be statistically 
explored and learned [10]. ML algorithms are useful to 
integrate and extract knowledge from diverse features 
with different statistical properties, being able to recognize 
patterns and generalize models to predict simple and 
complex classes [10-12]. 

Developing a CM is a challenging task. To consolidate a 
reliable model is required not only to select the best set of 
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attributes, algorithms, and parameters but also to 
understand which conditions may limit or improve its 
performance. In this context, the present research offers a 
unique perspective, evaluating the effects of the 
seasonality on the proposed CM. As a result, a few 
specific classification models (SCM) were derived from 
the global. 

The oil and gas industry increasingly demands scientific 
solutions at a multidisciplinary level, integrating data and 
methodologies to develop intelligent systems. This 
research reflects these tendencies and shows how ML 
represents an efficient way to extract knowledge and 
improve the CM accuracy to identify the OSS. 

The Gulf of Mexico (GoM) is known for the high incidence 
of petroleum seepage mostly concentrated in deep-water 
offshore regions. The optimal conditions needed to cause 
oil seepage are present there, including the abundant oil 
and gas reservoirs, as well as geological faults that 
induce hydrocarbon migration from the seafloor up to the 
sea surface. Despite 95% of released oils in the GoM are 
of natural origin, man-made mineral oil slicks may 
simultaneously occur. These spills are derived from 
petroleum exploration, production, transportation, and 
consumption activities [3],[13]. 

Situated in the southern GoM, the study area comprises 
the offshore region of the Campeche Bay, where prolific 
oil and gas reservoirs are located. The Cantarell complex 
is an important production asset that was discovered in 
1976 and until recently exploited as a monopoly by the 
state-owned PEMEX (Petróleos Mexicanos). The spatial 
and temporal recurrence of oil seeps in the Campeche 
Bay [13], particularly in Cantarell, consolidated this region 
as an important test site, offering the possibility to validate 
oil slick detection using SAR images. 

Furthermore, the GoM presents a strong seasonal 
variability in terms of meteo-oceanographic conditions, 
remarkably for wind intensity, including extreme climatic 
events like tropical cyclones and hurricanes [14],[15]. The 
winds also drive the dynamic of water circulation, 
transporting waters with different temperature and salinity 
[15]. 

 

Theory and Method 

Meteo-oceanographic conditions, such as intensity of 
winds and currents, wave height and sea surface 
temperature, have a direct effect over the sea surface 
roughness attenuation [4]. Generally, wind intensities 
ranging from 3 to 10 m.s-1 are considered suitable for oil 
detection, producing enough contrast between the oil 
slicks and the surrounding ocean [5],[6]. Low winds (≤3 
m.s-1) attenuate the sea surface roughness producing 
backscattering coefficients similar to the oil-contaminated 
patches, while higher wind intensities (≥10 m.s-1) 
fragment, disperse, and mix the oil into the ocean making 
the detection unfeasible [5].  

Other natural phenomena like algae blooms, biogenic 
oils, upwelling cold water, and rain cells can be 
mistakenly detected as mineral oils in SAR sensors. It is 

important to highlight that the interference of lookalikes is 
not considered in this research. 

There are different distortions generated by the SAR 
sensor inherent to the image acquisition process. The 
system can suffer many losses affecting the power 
density of the reflected signal detected by the antenna 
[16]. Therefore, the pre-processing images stage, that is, 
the SAR data calibration is essential to perform 
quantitative analysis using spectral and geometric 
properties extracted from time series of data, as proposed 
here. 

There are three types of calibration, as follows: (i) Sigma 
(S: σ0): projected signal on the Earth's surface (Ground-
Range); (ii) Beta (B: β0): backscattered signal in the 
inclined range (Slant-Range); (iii) Gamma (G: Ƴ0): 
backscattered signal on the incident wavefront 
(perpendicular to the Slant-Range) [16]. The calibrated 
power images can be converted to decibel (dB), using as 
formats amplitude (A) or intensity (I), where I is equal to 
A². Applying filtering to remove the speckle noise is 
another common data treatment. 

Beyond the spectral properties, geometric attributes like 
area, perimeter, and derivate metrics can be extracted 
from the satellite imagery providing valuable information 
about oil slick dimensions. Even if knowing that oil seeps 
and spills may be confused because of their similar 
dimensions, attributes such as shape and compactness 
can reveal different associated patterns. The shape 
indicates how irregular and fragmented the edges of the 
oil slicks are, while the compactness reveals their 
roundness level. Oil slicks with larger dimensions may 
remain on the sea surface longer, suffering a higher 
fragmentation of the edges by the weathering processes, 
action of waves and currents. Particularly in Cantarell, 
where seepage slicks can be predominantly larger than 
the anthropic ones [9], geometric properties may improve 
the predictive potential of the CM. 

During the last decades, a number of ML algorithms have 
been widely employed to solve a range of classification 
and regression problems using multiple sources of data, 
including remote sensing [11]. ML algorithms are useful in 
generalizing models to detect simple and complex 
classes. They are also effective for handling large 
datasets including input features of different types, 
formats, and statistical properties. The ML workflow 
involves recognizing patterns, memorizing, remembering, 
and adapting them automatically to build intelligent 
systems [17]. 

Discriminate the OSS is an example of a complex real-
world application, that requires a higher data 
dimensionality because of the spectral similarities 
between seeps and spills. In these cases, it is almost 
humanly impossible to find redundancies, statistical 
dependence-relations, select attributes and recognize 
patterns without using computational methods. Therefore, 
supervised ML algorithms are powerful to extract 
knowledge employing different statistical approaches to 
learn from multiple dimensions automatically in a 
controlled way [17].  
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In the last 20 years, significant achievements have been 
reported regarding the contributions of ML to develop 
automatic and semi-automatic systems for oil slick 
detection at the sea surface [13], allowing to minimize the 
human subjectivity and to improve the prediction 
performance. According to the scientific community, there 
is no perfect ML algorithm [11]. The selection is 
challenging mainly because their performance is case-
specific, being affected by many factors that can 
be listed, among others, as: quantity and quality of the 
remote sensing data; dataset dimension and statistical 
properties of the predictor features; number and 
complexity of the classes; training and test samples 
balancing [11],[12]. 

Furthermore, to consolidate a robust and operational 
classification model, it is necessary not only to select the 
best set of attributes, algorithms, and parameters, but 
also to understand which conditions may limit or improve 
its performance. 

The starting point for the present research is the database 
compiled, reviewed, and described by Carvalho et al. [3], 
[7-9]. It includes 4,916 samples detected in 277 
RADARSAT-2 images, being 2,021 oil seeps and 2,895 
spills, all of them validated by PEMEX. The available 
dataset follows all recommended parameters for oil 
detection, gathering a long time-series of radar imagery 
acquired in C band, with VV polarization and covering the 
proper range of incidence angles.   

The radar images were pre-processed and interpreted. 
The oil slick geometry was delineated by the 
Unsupervised Semivariogram Textural Classifier (USTC) 
[13]. From each oil slick, 418 predictive features were 
extracted, as follows: (a) 10 geometric: shape and 
dimensions; (b) 408 spectral: statistical measures 
comprising combinations of backscattering coefficients 
calibrated in Sigma (S: σ0), Beta (B: β0) and Gamma (G: 
Ƴ0), using amplitude (A) and decibel (dB) formats, as well 
as evaluating the benefits of the Frost (F) filter application 
for speckle noise reduction.  

Figure 1 provides the database overview in terms of 
number and features type. A description about the 
complete database, indicating features calculation and 
applied transformations are available in Carvalho et al. [7-
9]. 
  

 Figure 1 – The number of geometric and spectral 
features (these ones per calibration, format, and speckle 
filtering). 

 
The dependent categorical feature, Oil Slick Source 
(OSS), assigns the class Seep (1) or Spill (0) for each 

sample and constitutes the key to the successful learning 
process. 
The described dataset was used to carry out the 
predictive analysis and to develop a CM to distinguish the 
OSS. In order to understand the stability and the potential 
of the model, which should operate under different 
environmental conditions, an ancillary feature was added: 
seasonality. From the total oil slicks, 921 (18,73%) were 
detected in Winter, 1,660 (33,77%) in Spring, 1,130 
(22,99%) in Summer and 1,205 (24,51%) in Fall. 

Step I: To employ the exploratory data analysis (EDA) as 
part of the features pre-processing, for detecting and 
treating multiple correlations, outliers, missing values, 
spurious and redundant attributes, as well as for selecting 
an optimal subset. Different uni and multivariate statistical 
techniques were applied, such as: i) correlation matrices; 
ii) boxplots and histograms; iii) multi-dimensional scaling 
(MDS); iv) hierarchical clustering dendrogram using the 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA). The MDS was used to group similar features 
as a basis to select the attributes and to reduce the 
dataset dimensionality. The correlation matrices, boxplots 
and dendrograms offered support for a supervised 
selection. At the end of the process, only one feature per 
MDS group was kept. This procedure was initially 
performed 12 times (one for each block of 34 spectral 
attributes; see Figure 1) and then once for the geometric 
ones, with the objective of selecting the best features. 

Step II: To perform supervised classifications using as 
input the spectral and geometric features selected by the 
EDA. Six (6) well-known and consolidated ML algorithms 
were evaluated, as follows: (i) parametric: Gaussian 
Naïve Bayes (NB), Linear Discriminant Analysis (LDA) 
and Logistic Regression (LR); and (ii) nonparametric: 
Artificial Neural Networks (ANN), Random Forest (RF) 
and Decision Tree (DT). The global accuracies were used 
as a reference to select the best set of attributes, 
including the integration between geometric and spectral 
features, splitting 70% of the samples for training and 
30% for testing. 

Step III: To develop a global CM with sufficient 
generalization capacity, combining the best attributes, ML 
algorithms and parameters to discriminate the OSS. The 
set of parameters required by the algorithms affects the 
classification accuracies, especially for the nonparametric 
methods, which demand a higher number of parameters 
to be fitted. 

Step IV: To design SCM using the global CM as a 
reference and considering the seasonality as ancillary 
data. The goal is to optimize the model to operate under 
different meteo-oceanographic conditions. As a result, 5 
different scenarios were created to investigate the effects 
of the four seasons. 

All steps of this methodology were carried out using 
Python. Furthermore, a software prototype was 
implemented making it possible to test and evaluate 
automatically all scenarios employing different ML 
algorithms. 

 

Results 
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The EDA was conducted in two stages: the first focused 
on the spectral properties; the second evaluated the 
geometric features.  

During the first stage, the correlation matrices show that 
the spectral features are multicorrelated, highlighting the 
need for a data dimensionality reduction. Then the MDS 
clustered each block of 34 features (Figure 1) into 5 
distinct groups. The smaller the distances between the 
correlations, the greater the similarity between the 
features within the cluster, consolidating strategic blocks 
to perform the selection.  

For all sets of 34 features, the MDS found three stable 
groups, such as: Group 1) Central tendency: Average 
(Avg), Median (Med), Mode (Mod) and Sliced Average 
(Mda); Group 2) Dispersion: Variance (Var), Standard 
Deviation (Std), Range Maximum - Minimum (Rng), 
Average Absolute Deviation (Aad), Median Absolute 
Deviation (Mad) and Coefficient of Dispersion (COD); 
Group 3) Coefficients of Variation (COV) with the 
Variance in the numerator: Var/Avg, Var/Med, Var/Mod 
and Var/Mda. The rest of attributes, with greater 
variability, was clustered into groups 4 and 5. 

The redundancies were analyzed and only one attribute 
was selected per MDS group. In this process, the 
correlation matrices were used to map and exclude 
multicorrelated features with coefficients ≥ 0.9. The 
histograms per feature provided a comparison between 
the probability density functions, giving an idea about the 
separability between the classes of seeps and spills. The 
boxplots permitted to identify and select those attributes 
with lower overlapping between the statistical 
distributions. The dendrograms were analyzed to support 
the selection. Therefore, using an integrated approach, 
only five features remained per type of attribute. 

Subsequently, considering as input the five features 
selected per attribute type, the supervised ML algorithms 
(ANN, RF, LDA, LR, NB and DT) were performed to 
evaluate the best calibration type, data format and filtering 
benefits. 

Since the LDA returned the better performances, this 
algorithm was used as a reference to interpret the results 
below and recommend the proper calibration, data format, 
as well as the benefits of the filtering. 

Calibration: the results (accuracies) were quite similar 
between S (68.54), B (69.29) and G (68.27), which is 
reasonable considering that S, B and G are trigonometric 
derivations of one another, showing similar behavior and 
strong multi-correlations. Sigma is recommended since it 
is widely used by the scientific community, representing 
the surface backscattering cross section, where the 
mechanisms for oil detection are prevalent.   

Data format: the amplitude format returned relative better 
accuracies than dB for all calibrations S (A: 68.54; dB: 
67.66), B (A: 69.29; dB: 67.59) and G (A: 68.27; dB: 
65.42). Moreover, the image processing systems usually 
do not include the decibel format; this is another reason to 
extract the features using the amplitude format instead of 
dB. 

Frost Filter: the filtering did not yield a significant 
contribution, instead reducing global accuracies. This was 
observed for all calibrations, as follows: Data in amplitude 
S (A: 68.54; AF: 64.34), B (A: 69.29; AF: 63.86), and G 
(A: 68.27; AF: 63.80); data in decibel S (dB: 67.66; dBF: 
67.25), B (dB: 67.59; dBF 66.64), and G (dB: 65.42; dBF: 
64.27). 

Therefore, 408 spectral features were reduced to 34, 
keeping only the Sigma calibration in amplitude format 
without Frost filtering. These attributes could be reduced 
once more using the MDS clusters as a basis, eliminating 
the higher correlations and redundancies without 
damaging the predictions. At the end of the process, five 
spectral features, calibrated in Sigma and in amplitude 
format, were selected: S_Avg, S_Rng, S_CodAvg, 
S_VarAvg and S_StdMed. 

The same EDA was performed to select the best 
geometric features, employing equivalent tools and 
following the pre-defined workflow. As a result, among ten 
attributes, seven were preserved: Area, Perimeter, AtoP, 
PtoA, Shape, Compact and Fractal Index. 

Pondering that the quality of input attributes is the key for 
a successful prediction model, a deeper analysis was 
conducted to ascertain if the geometric and spectral 
features perform better isolated or in an integrated 
fashion. In this sense, adopting the features selected by 
the EDA as input, the next steps specified the best group 
of features and algorithms fitting parameters.  

The software prototype made possible to perform all data 
combinations, amplifying the number of iterations to 
design global and specific models for 5 different 
scenarios. The same six ML algorithms were 
implemented and evaluated. 

In general, the accuracies using only geometric features 
(71.46%, LR) were better than using only spectral 
(70.24%, DT). However, the integration between them 
improved the performances reaching 73.15% of maximum 
accuracy in RF, being the best-input option for the CM 
building. 

The DT and NB had an inverse behavior for spectral and 
geometric attributes. It is noticeable that the DT and NB 
are the ones with the most unstable performances 
throughout the classifiers, returning the worst accuracies, 
with values below the average for almost all combinations 
of attributes. Consequently, they were not considered in 
the subsequent analysis. The ANN, LDA and LR returned 
the most stable performances, with similar behavior for all 
groups of features. Considering the geometric and 
spectral features integration, the RF and ANN returned 
the better performances for OSS discrimination.  

Since the performance of the algorithms is case-specific, 
the next analysis used as input the 12 selected features 
keeping the parametric (LDA and LR) and nonparametric 
(ANN and RF) approaches. The goal is to find the proper 
inference method to derivate SCM from the global CM 
considering different seasons. 

The available database indicates the season that each oil 
slick was detected, giving indirect clues about the wind 
behavior. This information allows to evaluate the benefits 



SILVA, MIRANDA, MATIAS, GENOVEZ, TORRES, CARVALHO & PONTE 

 ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Seventeenth International Congress of the Brazilian Geophysical Society 

5

of building and fitting SCM considering the seasonality 
effect, once the GoM presents significant variations in 
terms of wind intensity and direction across the year. 

To accomplish this, five scenarios were investigated, as 
follows: (a) all seasons together (ALL); (b) Winter; (c) 
Spring; (d) Summer; (e) Fall. The maximum prediction 
accuracies obtained using the four ML algorithms are 
presented in Table 1(a), while the median accuracies are 
shown in Table 1(b). 
 

Table 1 – (a) Maximum accuracies and (b) median 
accuracies for all seasons together (ALL) and for each 
season, indicating the performance of the algorithms (RF, 
ANN, LDA and LR). 

(a) Maximum Accuracies 
  All Winter Spring Summer Fall 

RF 73.15 80.51 77.76 73.82 72.93 
ANN 73.02 77.98 75.15 72.65 73.48 
LDA 72.07 78.34 75.35 72.94 73.20 
LR 72.00 78.34 73.75 71.76 75.14 

 

(b) Median Accuracies 
  All Winter Spring Summer Fall 

RF 71.53 74.91 75.80 70.80 68.65 

ANN 70.04 75.45 71.99 69.77 67.82 
LDA 70.14 74.55 72.99 67.26 68.79 

LR 70.24 75.27 71.39 67.11 68.51 
 

Figure 2 provides the median accuracies for all tested ML 
algorithms plotting the average and maximum trends as 
reference.  

 

 

Figure 2 – Comparison between median accuracies 
achieved by all tested ML algorithms. 

 

The higher accuracies are obtained during Winter (Max: 
80.51; Median: 75.45) and Spring (Max: 77.76; Median: 
75.80), while the worst predictions are observed during 
Summer (Max: 73.82; Median: 70.80) and Fall (Max: 
75.14; Median: 68.79). The consistency of results was 
demonstrated by a historical database containing more 
than 100 years of hurricanes and tropical storms records 
(Figure 3). This database is provided by the National 
Oceanic and Atmospheric Administration (NOAA) [14] 
and shows that the months with the highest incidence of 

extreme weather events (August, September, and 
October) coincide with the worst seasons indicated by the 
prediction models (compare figures 2 and 3).  

The occurrence of high-intensity winds during the 
Summer and Fall certainly contributed to the worst 
performance of these models to distinguish natural from 
anthropic oil slicks. Moreover, precisely during the years 
of the project’s database development (2008-2012), the 
time-series of records evidenced a higher incidence of 
extreme weather events, notably with major hurricanes 
above the average, reinforcing the achieved results. 

 

Figure 3 – Number of hurricanes and tropical storms in 
the Atlantic (Atlantic Ocean, Caribbean Sea and Gulf of 
Mexico): 100-year historical series of data provided by 
NOAA. Source: https://www.nhc.noaa.gov/climo/. 

 

Regarding the ML algorithms, the RF returned the highest 
median accuracies for almost all seasons. It is interesting 
to note that the maximum accuracy achieved using the 
complete dataset (73.15%) is lower than the ones that 
correspond to the best (Winter: 80.51%) and the worst 
(Summer: 73.82%) seasonal scenarios.  

The research results indicate that seasonality causes a 
significant impact over the OSS identification in the GoM. 
The best seasons to acquire SAR data to distinguish 
seeps from spills are Winter and Spring. The predictions 
obtained demonstrated the potential offered by the 
models' specification in terms of features, algorithms, and 
parameters selection. 

 

Conclusions  

The database dimensionality was successfully reduced 
from 418 to 12 features thought the EDA, preserving the 
representativeness of the data without compromising the 
classification accuracies.  Regarding the seasonality, the 
best median accuracies are reached in Winter (75.45%) 
and Spring (75.80%), while the worst are found in 
Summer (70.80%) and Fall (68.79%). Consistently, the 
worst seasons coincide with the occurrence of hurricanes 
in the GoM, when high-intensity winds hamper oil slick 
detection using SAR instruments. 

The RF was found to be the most robust ML method for 
distinguishing seeps from spills. The adopted approach 

Best Seasons 

Spring Summer Fall 
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demonstrated that the proposed SCM is operational 
under different real-world conditions. The generalization 
capacity of the developed models will be assessed in 
future initiatives in the Brazilian Continental Margin. The 
contribution of new features and further ML algorithms to 
improve the OSS prediction will also be exploited. 
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